Static and Dynamic Feature Selection in Morphosyntactic Analyzers

نویسندگان

  • Bernd Bohnet
  • Miguel Ballesteros
  • Ryan T. McDonald
  • Joakim Nivre
چکیده

We study the use of greedy feature selection methods for morphosyntactic tagging under a number of different conditions. We compare a static ordering of features to a dynamic ordering based on mutual information statistics, and we apply the techniques to standalone taggers as well as joint systems for tagging and parsing. Experiments on five languages show that feature selection can result in more compact models as well as higher accuracy under all conditions, but also that a dynamic ordering works better than a static ordering and that joint systems benefit more than standalone taggers. We also show that the same techniques can be used to select which morphosyntactic categories to predict in order to maximize syntactic accuracy in a joint system. Our final results represent a substantial improvement of the state of the art for several languages, while at the same time reducing both the number of features and the running time by up to 80% in some cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating Commercial Macroporous Resin (D201) for Uranium Uptake in Static and Dynamic Fixed Bed Ion Exchange Column

As part of the development of equipment and innovative technology for the process flow-sheet, a study on the selection of good resin for uranium uptake is ongoing. Both static and dynamic column equilibrium testing upon synthetic and Gattar pregnant leach solutions (PLS) were carried out to estimate the change of total capacity and breakthrough capacity of the commercial macroporous anion excha...

متن کامل

Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements

In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...

متن کامل

Proposed Feature Selection for Dynamic Thermal Management in Multicore Systems

Increasing the number of cores in order to the demand of more computing power has led to increasing the processor temperature of a multi-core system. One of the main approaches for reducing temperature is the dynamic thermal management techniques. These methods divided into two classes, reactive and proactive. Proactive methods manage the processor temperature, by forecasting the temperature be...

متن کامل

The Segmental Boosting Algorithm for Time-series Feature Selection

Discriminative feature selection paradigms, e.g., [8, 9] usually consider observation frames in an isolated manner, neglecting temporal dependency in time series. Such temporal relationships provide important information for recognition. We propose Segmental Boosting Algorithm (SBA), which applies feature selection only to the “static segments” of the timeseries. It smoothly fills in the gap be...

متن کامل

Ensemble Feature Selection with Dynamic Integration of Classifiers

Recent research has proved the benefits of the use of ensembles of classifiers for classification problems. Ensembles of classifiers can be constructed by a number of methods manipulating the training set with the purpose of creating a set of diverse and accurate base classifiers. One way to manipulate the training set for construction of the base classifiers is to apply feature selection. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1603.06503  شماره 

صفحات  -

تاریخ انتشار 2016